Docs
  • Solver
  • Models
    • Field Service Routing
    • Employee Shift Scheduling
  • Platform
Try models
  • Timefold Solver 0.8.42
  • Hyperheuristics
  • Edit this Page
  • 0.8.x
    • latest
    • 0.8.x

Timefold Solver 0.8.42

    • Timefold introduction
    • Quickstart
      • Overview
      • Hello world Java quick start
      • Quarkus Java quick start
      • Spring Boot Java quick start
    • Use cases and examples
    • Timefold configuration
    • Score calculation
    • Constraint streams score calculation
    • Shadow variable
    • Optimization algorithms
    • Move and neighborhood selection
    • Exhaustive search
    • Construction heuristics
    • Local search
    • Evolutionary algorithms
    • Hyperheuristics
    • Partitioned search
    • Benchmarking and tweaking
    • Repeated planning
    • Integration
    • Design patterns
    • Development
    • Release Notes

Hyperheuristics

1. Overview

A hyperheuristic automates the decision which heuristic(s) to use on a specific data set.

A future version of Timefold will have native support for hyperheuristics. Meanwhile, it’s possible to implement it yourself: Based on the size or difficulty of a data set (which is a criterion), use a different Solver configuration (or adjust the default configuration using the Solver configuration API). The Benchmarker can help to identify such criteria.

  • © 2025 Timefold BV
  • Timefold.ai
  • Documentation
  • Changelog
  • Send feedback
  • Privacy
  • Legal
    • Light mode
    • Dark mode
    • System default