Define the constraints and calculate the score
A score represents the quality of a specific solution. The higher the better. Timefold Solver looks for the best solution, which is the solution with the highest score found in the available time. It might be the optimal solution.
Because this use case has hard and soft constraints,
use the HardSoftScore
class to represent the score:
-
Hard constraints must not be broken. For example: A room can have at most one lesson at the same time.
-
Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.
Hard constraints are weighted against other hard constraints. Soft constraints are weighted too, against other soft constraints. Hard constraints always outweigh soft constraints, regardless of their respective weights.
To calculate the score, you could implement an EasyScoreCalculator
class:
-
Java
-
Kotlin
-
Python
public class TimetableEasyScoreCalculator implements EasyScoreCalculator<Timetable, HardSoftScore> {
@Override
public HardSoftScore calculateScore(Timetable timetable) {
List<Lesson> lessons = timetable.getLessons();
int hardScore = 0;
for (Lesson a : lessons) {
for (Lesson b : lessons) {
if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot())
&& a.getId() < b.getId()) {
// A room can accommodate at most one lesson at the same time.
if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) {
hardScore--;
}
// A teacher can teach at most one lesson at the same time.
if (a.getTeacher().equals(b.getTeacher())) {
hardScore--;
}
// A student can attend at most one lesson at the same time.
if (a.getStudentGroup().equals(b.getStudentGroup())) {
hardScore--;
}
}
}
}
int softScore = 0;
// Soft constraints are only implemented in the timefold-quickstarts code
return HardSoftScore.of(hardScore, softScore);
}
}
class TimetableEasyScoreCalculator : EasyScoreCalculator<Timetable, HardSoftScore> {
override fun calculateScore(solution: Timetable): HardSoftScore {
val lessons = solution.lessons
var hardScore = 0
for (a in lessons) {
for (b in lessons) {
if (a.timeslot != null && a.timeslot == b.timeslot && a.id!! < b.id!!) {
// A room can accommodate at most one lesson at the same time.
if (a.room != null && a.room == b.room) {
hardScore--
}
// A teacher can teach at most one lesson at the same time.
if (a.teacher == b.teacher) {
hardScore--
}
// A student can attend at most one lesson at the same time.
if (a.studentGroup == b.studentGroup) {
hardScore--
}
}
}
}
val softScore = 0
// Soft constraints are only implemented in the timefold-quickstarts code
return HardSoftScore.of(hardScore, softScore)
}
}
from timefold.score.score import easy_score_calculator, HardSoftScore
@easy_score_calculator
def school_timetable_constraints(solution: Timetable):
lessons = solution.lessons
hard_score = 0
for a in lessons:
for b in lessons:
if a.timeslot != null and a.timeslot == b.timeslot and a.id < b.id:
# A room can accommodate at most one lesson at the same time.
if a.room != null and a.room == b.room:
hard_score -= 1
# A teacher can teach at most one lesson at the same time.
if a.teacher == b.teacher:
hard_score -= 1
# A student can attend at most one lesson at the same time.
if a.student_group == b.student_group:
hard_score -= 1
soft_score = 0
# Soft constraints are only implemented in the timefold-quickstarts code
return HardSoftScore.of(hard_score, soft_score)
Unfortunately that does not scale well, because it is non-incremental: every time a lesson is assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.
Instead, create a TimetableConstraintProvider
class
to perform incremental score calculation.
It uses Timefold Solver’s Constraint Streams API
which is inspired by Java Streams and SQL:
-
Java
-
Kotlin
-
Python
Create a src/main/java/org/acme/schooltimetabling/solver/TimetableConstraintProvider.java
class:
package org.acme.schooltimetabling.solver;
import org.acme.schooltimetabling.domain.Lesson;
import ai.timefold.solver.core.api.score.buildin.hardsoft.HardSoftScore;
import ai.timefold.solver.core.api.score.stream.Constraint;
import ai.timefold.solver.core.api.score.stream.ConstraintFactory;
import ai.timefold.solver.core.api.score.stream.ConstraintProvider;
import ai.timefold.solver.core.api.score.stream.Joiners;
public class TimetableConstraintProvider implements ConstraintProvider {
@Override
public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
return new Constraint[] {
// Hard constraints
roomConflict(constraintFactory),
teacherConflict(constraintFactory),
studentGroupConflict(constraintFactory),
// Soft constraints are only implemented in the timefold-quickstarts code
};
}
private Constraint roomConflict(ConstraintFactory constraintFactory) {
// A room can accommodate at most one lesson at the same time.
return constraintFactory
// Select each pair of 2 different lessons ...
.forEachUniquePair(Lesson.class,
// ... in the same timeslot ...
Joiners.equal(Lesson::getTimeslot),
// ... in the same room ...
Joiners.equal(Lesson::getRoom))
// ... and penalize each pair with a hard weight.
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Room conflict");
}
private Constraint teacherConflict(ConstraintFactory constraintFactory) {
// A teacher can teach at most one lesson at the same time.
return constraintFactory
.forEachUniquePair(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getTeacher))
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Teacher conflict");
}
private Constraint studentGroupConflict(ConstraintFactory constraintFactory) {
// A student can attend at most one lesson at the same time.
return constraintFactory
.forEachUniquePair(Lesson.class,
Joiners.equal(Lesson::getTimeslot),
Joiners.equal(Lesson::getStudentGroup))
.penalize(HardSoftScore.ONE_HARD)
.asConstraint("Student group conflict");
}
}
Create a src/main/kotlin/org/acme/schooltimetabling/solver/TimetableConstraintProvider.kt
class:
package org.acme.kotlin.schooltimetabling.solver
import ai.timefold.solver.core.api.score.buildin.hardsoft.HardSoftScore
import ai.timefold.solver.core.api.score.stream.Constraint
import ai.timefold.solver.core.api.score.stream.ConstraintFactory
import ai.timefold.solver.core.api.score.stream.ConstraintProvider
import ai.timefold.solver.core.api.score.stream.Joiners
import org.acme.kotlin.schooltimetabling.domain.Lesson
import org.acme.kotlin.schooltimetabling.solver.justifications.*
import java.time.Duration
class TimeTableConstraintProvider : ConstraintProvider {
override fun defineConstraints(constraintFactory: ConstraintFactory): Array<Constraint> {
return arrayOf(
// Hard constraints
roomConflict(constraintFactory),
teacherConflict(constraintFactory),
studentGroupConflict(constraintFactory),
// Soft constraints
teacherRoomStability(constraintFactory),
teacherTimeEfficiency(constraintFactory),
studentGroupSubjectVariety(constraintFactory)
)
}
fun roomConflict(constraintFactory: ConstraintFactory): Constraint {
// A room can accommodate at most one lesson at the same time.
return constraintFactory
// Select each pair of 2 different lessons ...
.forEachUniquePair(
Lesson::class.java,
// ... in the same timeslot ...
Joiners.equal(Lesson::timeslot),
// ... in the same room ...
Joiners.equal(Lesson::room)
)
// ... and penalize each pair with a hard weight.
.penalize(HardSoftScore.ONE_HARD)
.justifyWith { lesson1: Lesson, lesson2: Lesson, _ ->
RoomConflictJustification(lesson1.room, lesson1,lesson2)}
.asConstraint("Room conflict")
}
fun teacherConflict(constraintFactory: ConstraintFactory): Constraint {
// A teacher can teach at most one lesson at the same time.
return constraintFactory
.forEachUniquePair(
Lesson::class.java,
Joiners.equal(Lesson::timeslot),
Joiners.equal(Lesson::teacher)
)
.penalize(HardSoftScore.ONE_HARD)
.justifyWith { lesson1: Lesson, lesson2: Lesson, _ ->
TeacherConflictJustification(lesson1.teacher, lesson1, lesson2)}
.asConstraint("Teacher conflict")
}
fun studentGroupConflict(constraintFactory: ConstraintFactory): Constraint {
// A student can attend at most one lesson at the same time.
return constraintFactory
.forEachUniquePair(
Lesson::class.java,
Joiners.equal(Lesson::timeslot),
Joiners.equal(Lesson::studentGroup)
)
.penalize(HardSoftScore.ONE_HARD)
.justifyWith { lesson1: Lesson, lesson2: Lesson, _ ->
StudentGroupConflictJustification(lesson1.studentGroup, lesson1, lesson2)}
.asConstraint("Student group conflict")
}
fun teacherRoomStability(constraintFactory: ConstraintFactory): Constraint {
// A teacher prefers to teach in a single room.
return constraintFactory
.forEachUniquePair(
Lesson::class.java,
Joiners.equal(Lesson::teacher)
)
.filter { lesson1: Lesson, lesson2: Lesson -> lesson1.room !== lesson2.room }
.penalize(HardSoftScore.ONE_SOFT)
.justifyWith { lesson1: Lesson, lesson2: Lesson, _ ->
TeacherRoomStabilityJustification(lesson1.teacher, lesson1, lesson2)}
.asConstraint("Teacher room stability")
}
fun teacherTimeEfficiency(constraintFactory: ConstraintFactory): Constraint {
// A teacher prefers to teach sequential lessons and dislikes gaps between lessons.
return constraintFactory
.forEach(Lesson::class.java)
.join(Lesson::class.java,
Joiners.equal(Lesson::teacher),
Joiners.equal { lesson: Lesson -> lesson.timeslot?.dayOfWeek })
.filter { lesson1: Lesson, lesson2: Lesson ->
val between = Duration.between(
lesson1.timeslot?.endTime,
lesson2.timeslot?.startTime
)
!between.isNegative && between <= Duration.ofMinutes(30)
}
.reward(HardSoftScore.ONE_SOFT)
.justifyWith{ lesson1: Lesson, lesson2: Lesson, _ ->
TeacherTimeEfficiencyJustification(lesson1.teacher, lesson1, lesson2)}
.asConstraint("Teacher time efficiency")
}
fun studentGroupSubjectVariety(constraintFactory: ConstraintFactory): Constraint {
// A student group dislikes sequential lessons on the same subject.
return constraintFactory
.forEach(Lesson::class.java)
.join(Lesson::class.java,
Joiners.equal(Lesson::subject),
Joiners.equal(Lesson::studentGroup),
Joiners.equal { lesson: Lesson -> lesson.timeslot?.dayOfWeek })
.filter { lesson1: Lesson, lesson2: Lesson ->
val between = Duration.between(
lesson1.timeslot?.endTime,
lesson2.timeslot?.startTime
)
!between.isNegative && between <= Duration.ofMinutes(30)
}
.penalize(HardSoftScore.ONE_SOFT)
.justifyWith { lesson1: Lesson, lesson2: Lesson, _ ->
StudentGroupSubjectVarietyJustification(lesson1.studentGroup, lesson1, lesson2)}
.asConstraint("Student group subject variety")
}
}
Create a school_timetabling_constraints
function in src/hello_world/constraints.py
:
from timefold.solver.score import (constraint_provider, HardSoftScore, Joiners,
ConstraintFactory, Constraint)
from .domain import Lesson
@constraint_provider
def define_constraints(constraint_factory: ConstraintFactory):
return [
room_conflict(constraint_factory),
teacher_conflict(constraint_factory),
student_group_conflict(constraint_factory),
# Soft constraints are only implemented in the timefold-quickstarts code
]
def room_conflict(constraint_factory: ConstraintFactory) -> Constraint:
# A room can accommodate at most one lesson at the same time.
return (constraint_factory
# Select each pair of 2 different lessons ...
.for_each_unique_pair(Lesson,
# ... in the same timeslot ...
Joiners.equal(lambda lesson: lesson.timeslot),
# ... in the same room ...
Joiners.equal(lambda lesson: lesson.room))
# ... and penalize each pair with a hard weight.
.penalize(HardSoftScore.ONE_HARD)
.as_constraint("Room conflict"))
def teacher_conflict(constraint_factory: ConstraintFactory) -> Constraint:
# A teacher can teach at most one lesson at the same time.
return (constraint_factory
.for_each_unique_pair(Lesson,
Joiners.equal(lambda lesson: lesson.timeslot),
Joiners.equal(lambda lesson: lesson.teacher))
.penalize(HardSoftScore.ONE_HARD)
.as_constraint("Teacher conflict"))
def student_group_conflict(constraint_factory: ConstraintFactory) -> Constraint:
# A student can attend at most one lesson at the same time.
return (constraint_factory
.for_each_unique_pair(Lesson,
Joiners.equal(lambda lesson: lesson.timeslot),
Joiners.equal(lambda lesson: lesson.student_group))
.penalize(HardSoftScore.ONE_HARD)
.as_constraint("Student group conflict"))
The ConstraintProvider
scales an order of magnitude better than the EasyScoreCalculator
: O(n) instead of O(n²).